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A non-Born–Oppenheimer self-consistent field method
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This communication outlines the development of a novel method for the ab initio
computation of molecular systems wherein the Born–Oppenheimer approximation is
not invoked. In the current method, a common Hamiltonian is employed to operate
on the electrons and nuclei simultaneously. In addition, an inseparable wavefunction is
generated to describe the non-Born–Oppenheimer behaviour. The physical implications
of the new method are discussed.
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1. Introduction

The Born–Oppenheimer approximation is one of the cornerstones upon
which modern quantum chemistry is founded. The application of this approxi-
mation has made it possible to treat systems containing more than a small num-
ber of particles (nuclei and electrons). However, it must be recalled that the
BO method is still an approximation. The Born–Oppenheimer approximation
is a technique that implicitly assumes the separability of nuclear and electronic
motion in a bound system. The method treats electronic and nuclear motion
independently, the only interaction between the two realms being through the
electrostatic potential term [1,2]. Under the adiabatic approximation, the molec-
ular wavefunction is approximated as the product of electronic and nuclear wave-
functions.

Ψ = ψeψn. (1)

A method based on implementation of the nuclear delocalisation has been
introduced by Thomas [3–10] and implemented by Bochevarov et al. in the
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ENMO (electrons and nuclei molecular orbital) method [11]. However, the
ENMO method also suffers from the issue of separability.

The purpose of this study is to explore ways in which the separabil-
ity approximation can be removed. Removal of the separability approximation
would allow the accurate calculation of the electron density distribution in a
molecule. The inability to compute the density distribution accurately currently
precludes the ability to compute electronic spectra to high accuracy, for exam-
ple using time-dependent methods [12]. This is further illustrated by the fact
that Born–Oppenheimer calculations are unable to reproduce the difference in
electronic excitation energies that have been observed in small molecules [13].
In addition, there are systems for which the “fixed nuclei” model yields inad-
equate results, such as the cooperative electron-proton transfer (CEPT) reac-
tions observed in biological systems [14]. Previous efforts at transcending the
Born–Oppenheimer approximation have traditionally taken two approaches (a)
treating nuclear motion as a perturbation [15–18], or (b) solving the molecular
wavefunction for electrons and nuclei in a self-consistent manner [3–11,19–26].
This study combines the motivations of the second approach with the methods
developed in the former.

The general non-Born–Oppenheimer wavefunction is given by Handy et al.
[15] and others [17] to be

Ψ =
∑

i

ψni (R) ψei (r, R), (2)

where the coordinates R and r refer to the nuclear and electronic coordinates
and the index i runs over a series of unspecified pairs of nuclear and elec-
tronic wavefunctions. It can be directly seen that the above wavefunction is
non-separable into the electronic and nuclear wavefunctions.

2. Method

It has been stated that “One of the most urgent problems of modern quan-
tum chemistry is to treat the motions of the atomic nuclei and the electrons on
a more or less equivalent basis” [27]. This is also preferable as the treatment of
nuclei as quantum particles is necessary for the proper physical representation
of the system. Hence, there is importance in generating a method that treats the
nuclei equivalently as quantum particles. The generalized Hamiltonian is given
by

Ĥ =
∑

i

− 1
2mi

∇2
i +

∑

i

∑

j

Zi Z j

ri j
, (3)

where the summation runs over all particles in the system. This ensures that
the electrons and nuclei are treated in an equivalent fashion, as there is no
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distinction made in the Hamiltonian as to whether the particles in question are
nuclei or electrons.

To be a true non-Born–Oppenheimer method, the wavefunction should be
inseparable between electronic and nuclear contributions. The wavefunction is
required to be anti-symmetric with respect to interchange of identical fermions,
and symmetric with respect to interchange of bosons [28]; the wavefunction of
non-identical particles is also symmetric with respect to interchange [29]. A com-
pletely coupled wavefunction satisfying the above conditions can be constructed
by

Ψ = 1√
N

∑

i

⎡

⎣Si

fermions∏

n=1

∣∣Dn
i

∣∣
bosons∏

n=1

∣∣Dn
i

∣∣+

⎤

⎦, (4)

wherein the interchange is permitted between particles of both types. The
requirements of exchange symmetry lead to a situation wherein the electrons can
occupy nucleus-like orbitals and vice versa. This permits a better description of
the electron density near the mean position of the nucleus. Additionally, permit-
ting nuclei to occupy electronic orbitals lends some flexibility in their positional
distributions. The probability of interchange between two particles is a function
of the overlap between the wavefunctions housing the two particles [29]. Hence,
the various terms in Ψ are scaled by the overlap integrals Si .

Si =
k∏

n=1

〈∣∣Dn
0

∣∣ ∣∣ ∣∣Dn
i

∣∣〉. (5)

In the above relation,
∣∣Dn

i

∣∣ refers to the determinant of particle type n in the ith
term of the expansion. The

∣∣Dn
0

∣∣ refers to the first (‘reference’) term in the expan-
sion. For example, the wavefunction for the H2 molecule is given by

Ψ = 1√
N

⎡

⎢⎢⎢⎣

∣∣∣∣
ψ1(r1) ψ2(r1)

ψ1(r2) ψ2(r2)

∣∣∣∣

∣∣∣∣
ψ3(r3) ψ4(r3)

ψ3(r4) ψ4(r4)

∣∣∣∣ + S13

∣∣∣∣
ψ3(r1) ψ2(r1)

ψ3(r2) ψ2(r2)

∣∣∣∣

∣∣∣∣
ψ1(r3) ψ4(r3)

ψ1(r4) ψ4(r4)

∣∣∣∣

+S14

∣∣∣∣
ψ4(r1) ψ2(r1)

ψ4(r2) ψ2(r2)

∣∣∣∣

∣∣∣∣
ψ3(r3) ψ1(r3)

ψ3(r4) ψ1(r4)

∣∣∣∣ + S23

∣∣∣∣
ψ1(r1) ψ3(r1)

ψ1(r2) ψ3(r2)

∣∣∣∣

∣∣∣∣
ψ2(r3) ψ4(r3)

ψ2(r4) ψ4(r4)

∣∣∣∣

+S24

∣∣∣∣
ψ1(r1) ψ4(r1)

ψ1(r2) ψ4(r2)

∣∣∣∣

∣∣∣∣
ψ3(r3) ψ2(r3)

ψ3(r4) ψ2(r4)

∣∣∣∣ + S13S24

∣∣∣∣
ψ3(r1) ψ4(r1)

ψ3(r2) ψ4(r2)

∣∣∣∣

∣∣∣∣
ψ1(r3) ψ2(r3)

ψ1(r4) ψ2(r4)

∣∣∣∣

⎤

⎥⎥⎥⎦, (6)

where particles 1 and 2 are particles of one type (say electrons) and particles 3
and 4 are of the other type (protons), and the ψs refer to occupied wavefunc-
tions. The maximum number of terms in the wavefunction expansion for a sys-
tem of K particles of k distinguishable types, where there are ni particles of type
i (i is contained in k) is given by

N T =
k−1∏

i=1

(K − ∑i−1
p=1 n p)!

ni !(K − ∑i
p=1 n p)!

(7)
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where the summation is over all particle types (k) and all particles (K ) are
included in the combinatorial expansion. Notably, there are now no zero terms
in the expansion as the interchange has been constrained to only the spatial
parts of the spin orbitals. The total number of Fock equations to be solved then
becomes

N E =
(

k−1∏

i=1

(K − ∑i−1
p=1 n p)!

ni !(K − ∑i
p=1 n p)!

)2

. (8)

This is then an upper bound that is only attained in the (unlikely) situation that
there are identical numbers of particles of each particle type in the system. The
normalization factor N for a set of ortho-normal wavefunctions is obtained by

N = 1 +
∑

S2
i j . (9)

It can be shown that the terms in the wavefunction expansion are not mutually
orthogonal. Hence, the normalization factor N is given in terms of

N =
N T −1∑

a=0

N T −1∑

b=0

Sa Sb (10)

with 0 referring to the reference configuration. Since the system contains k
particle types, each containing nk particles, the overall normalization constant
becomes

N =
(

k∏

i=1

ni !
)

N T −1∑

a=0

N T −1∑

b=0

Sa Sb. (11)

In principle, the optimised wavefunction also yields an optimised geometry
for the system. The mean position of any given nucleus is given by

〈ri 〉 = 〈Ψ| r̂i |Ψ〉
〈Ψ | Ψ〉 . (12)

Since “atom-centred” basis sets are used (in modified form or otherwise), it is
necessary for the mean positions of the nuclei to be in the vicinity of the ori-
gins (centres) of the basis functions. Hence, the basis functions are translated to
the new ‘positions’ of the nuclei as computed above. This is necessary as oth-
erwise highly deformed wavefunctions may result, especially when input geome-
tries are sufficiently different from the optimal geometry for the given set of basis
functions. One of the convergence criteria would then be that the mean positions
of the nuclei do not change from one iteration to the next. As noted above, the
mean position of a given nucleus is given by

〈ri 〉 = 〈Ψ| r̂i |Ψ〉
〈Ψ | Ψ〉 . (12)
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Since the total wavefunction can be written as Ψ = (1/
√

N )
∑

i

[
Si

∏k
n=1

∣∣Dn
i

∣∣
]
,

after factoring in the normalization condition the above expression then becomes

〈ri 〉 =
〈
∑
a

Sa

k∏
n=1

∣∣Dn
a

∣∣
∣∣∣∣∣ r̂i

∣∣∣∣∣
∑
a

Sa

k∏
n=1

∣∣Dn
a

∣∣
〉

= ∑
a

∑
b

Sa Sb

〈
k∏

n=1

∣∣Dn
a

∣∣
∣∣∣∣∣ ri

∣∣∣∣∣
k∏

n=1

∣∣Dn
b

∣∣
〉 . (13)

Integrating over all types of particles other than that of the nucleus of interest,

〈ri 〉 =
∑

a

∑

b

Sa Sb

∑

j,k

〈
ψa

j (ri )riψ
b
k (ri )

〉
. (14)

Expanding the single-particle wavefunctions as ψ j = ∑
x Cx jχx ,

〈ri 〉 =
∑

a

∑

b

Sa Sb

∑

j

∑

k

∑

x

∑

y

Ca
x j C

b
xy

〈
χxriχy

〉
. (15)

In the case that real functions are used, corrections must be made for double
counting. Hence,

〈ri 〉 = 1
2

∑

a

∑

b

Sa Sb

∑

j

∑

k

∑

x

∑

y

Ca
x j C

b
yk

〈
χxriχy

〉
. (16)

Optimisation of the geometry allows one to converge only to station-
ary points respective to both electronic and nuclear coordinates simultaneously.
Hence, the computation of the geometry by this method could yield either a
minimum or a saddle point. Implementation of such a method would enable
optimisation only to stationary points, such that the optimised result is a sta-
tionary point with respect to electronic and nuclear coordinates. Hence, one can
gather that the only possible results would be optimisation to minima and saddle
points. Identification of the same could be achieved by investigating the curva-
ture at the final geometry.

In a true non-Born–Oppenheimer method, it is strictly not possible to think
in terms of a definite molecular geometry. The concept of a molecular geom-
etry (with known bond lengths and bond angles) suggests that the exact rela-
tive positions of the various atoms (nuclei) in the system are known. This would
imply invocation of the Born–Oppenheimer approximation. However, the con-
cept of a molecular geometry is something that is of great interest to chem-
ists. All experimental determinations of the molecular geometries are necessarily
time-averages of the various instantaneous orientations of the molecule over the
time frame of the experiment. This involves computation of the mean positions
of the nuclei in the system. The vectorial differences in position will lead to mean
inter-nuclear separations and hence mean bond angles can also be calculated. As
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the experimental determination yields a time-average position, this is analogous
to the expectation value of the nuclear positions.

3. Notes on implementation

The method mentioned above is in the process of being implemented. A
possible implementation scheme for this non-Born–Oppenheimer technique is
outlined below.

In order to not bias the results of a calculation, and to avoid symmetry
breaking effects (present in the energy terms beyond the zero order), the method
must be implemented to run in C1 symmetry. This is also necessary to avoid the
difficulties involved when separating the various particle types, which are treated
as being self-contained systems, each with its own symmetry. This is a relic of
the manner in which quantum chemical codes have been implemented to date, as
there was never a necessity to consider any more than the electrons in the sys-
tem. It is also worth remembering that isotopic substitution leads to break of
symmetry, and currently extant codes are not capable of accepting these differ-
ences. Hence, it is deemed prudent to ignore symmetry constraints and perform
all calculations without symmetry.

As in any other implementation, the input should contain a guess geome-
try for the system of interest. In addition, it is necessary to specify the isotope
for each atom in the system. The first step in the analysis involves the placing
of the various particles in ‘boxes’, one for each particle type. The first box con-
tains electrons; the other boxes are labelled as per the order of appearance in the
input stream. The basis to be used is read in from the input file. The basis func-
tions for the nuclei are generated internally based on the information provided
by scaling the electronic basis functions at each centre. Since it is known that the
effect of delocalisation of the nuclei is small, it is necessary to employ reasonably
large basis sets on the nuclei to capture the effect accurately. The extent of scal-
ing remains an open question. Clearly, the basis space for the nuclei—describing
the extent of delocalisation—should necessarily be reduced in geometric extent
relative to that of the electrons. This can be rationalized based on the knowledge
that the de Broglie wavelength of a particle is inversely related to its mass. In
modern computational chemical techniques, the delocalisation of the electron is
approximated by means of a set of basis functions (typically Gaussian in behav-
iour but not necessarily so). The basis functions provide a means to approximate
the extent of delocalisation of the electrons in a molecule. As most basis func-
tions are of the form χ = Yl,me−αr2

, the radial delocalisation is completely con-
centrated in the exponential term. Hence, it is reasonable to scale the exponential
term to achieve the requisite behaviour for the nuclei. This cannot be attained
by scaling the function by a scalar multiplicative factor, as the normalisation
procedure would nullify its effects. It is therefore necessary to modify the radial
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dependence by modifying the exponential part of the term. This is achieved by
scaling the exponent by a factor of (m/me)

1/x , with the value of x left to be
determined.

The value of x , though not known directly can be inferred from other
sources. It may be recalled that based on the equipartition of kinetic energy, the
total wavefunction was expanded in terms of (m/me)

1/4 [1, 2]. This yields a sug-
gested value of x = 4. Bochevarov et al. [11] implemented the ENMO method
in which a value of unity is employed for x . This may be due to expedience as
no satisfactory explanation is proffered as to why this should be the case. Inter-
estingly, Tachikawa and others [30] obtained a value of x = 1.2 for their basis
set, when recalculated from the published exponents. In another work, Tachik-
awa and Osamura obtain values of x between 2.1 and 3.5 [31]. A strict com-
parison is complicated by the fact that the basis functions were optimised in the
molecule and not for the free atom. Hence, the reported basis functions vary by
the isotopomer, and not the isotope. Though the Tachikawa approach is valu-
able, it does not provide a general method to determine the scaling factors. There
is also no information as to what the physically expected scaling factor must be,
so a completely general means of generating scaling factors is required in order
to be of widespread applicability. However, the similarity to the values predicted
by Born and Oppenheimer lends credence to the view that the optimised value
is dominated by the physically predicted equipartition principle.

The equipartition principle states that the energy contribution of each of
the degrees of freedom in a system should be of the same order of magnitude
[32]. Depending on the form of the specific potential, the various contributions
differ by a simple multiplicative factor [32]. Hence, as a first approximation to
the expected scaling factor, one can determine the scaling factor that would
yield a nuclear kinetic energy similar in magnitude to the electronic kinetic
energy. For simplicity’s sake, one can consider a single electronic basis function
χ and the scaled nuclear analogue χ ′. If one were to consider a Gaussian shape
for the basis function χ = e−αr2

, then the nuclear function is χ ′ = e−α′r2
where

α′ = (q1/x )α. The ratio q = (m/me) represents the mass of the nucleus in atomic
units. One need not consider the angular contribution, as the angular contribu-
tion cancels out. For a Gaussian function, it can be shown that x is in the neigh-
bourhood of 1/2. Since a highly simplified case is presented here, it is likely that
the actual value obtained may be significantly different from that predicted here.
It is interesting that an analogous treatment for Slater functions yields an exact
value of unity for x .

Once the basis functions are scaled and placed in boxes, the remainder
of the problem is one for which a solution is already known: the unrestricted
Hartree-Fock method. Prior to solving the UHF wavefunction by means of the
Pople-Nesbet equations [33], it is necessary to generate a list of the various basis
functions and their ‘origins’ (namely, which box they come from). This ensures
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that the basis functions belonging to a certain box are only optimised within that
box. Moreover, the ‘inter-box’ interactions need to be quantified and hence it
is more convenient to generate a comprehensive list of all possible interactions
and choose the relevant integrals as and when required. In this manner, one can
retain the integrals necessary for the higher-order energy terms without resorting
to regeneration of the same.

The H matrix for each box is constructed from the T matrix for each box.
The other contribution to the H matrix comes from the inter-box Coulombic
interactions. For the sake of convenience, these will be referred to as J i j where
the subscripts refer to the boxes connected by these terms. From the guess func-
tions, the P matrices for each box can be generated. The density distribution
matrix D is generated according to the property D(i, j) = S(i, j)P(i, j), where
the S matrix is the (previously defined) overlap matrix relevant to the box. This
matrix denotes the distribution of particle density as a function of the basis,
whereas the P matrix signifies the occupation distribution along the same axis.
The H matrix for a given box i can then be given by

Hi = Ti +
∑

j �=i

Dj J i j . (17)

This includes all the interactions except the Coulomb and exchange interactions
present within each box. The intra-box Coulomb interactions are introduced
via the G matrix. Solving the Pople-Nesbet equations then optimises the den-
sity matrix P (by optimising the coefficient matrix). Since the H matrix remains
unchanged during the optimisation of the coefficient matrix for a box, the H
matrix needs to be updated based on the new P matrices generated. One cycle
wherein the SCF convergence for each particle type is performed is defined as
an epoch. The H matrices are only updated at the end of each epoch. Hence, it
can be considered that the convergence of the H matrices be a condition of con-
vergence of the system. It is to be remembered that the T matrix remains con-
stant for any given geometric configuration. Hence, convergence of the H matrix
implies convergence of the P matrices.

It may be recalled that the computation of energy in the Pople-Nesbet
(UHF) method is related to the density distributions (Pα and Pβ matrices)
through the H and F matrices, where F is the sum of the H and G matrices. The
UHF energy is given by

E0 = 1
2

∑

µ

∑

ν

[
PT
νµHµν + PανµFαµν + PβνµFβµν

]
. (18)

In an analogous fashion, the energy of each box can be computed by

Ei = ni !
2N0

∑

µ

∑

ν

⎡

⎣PT,i
νµ

(
Hi
µν + Ti

µν

2

)
+

spins∑

s

Ps,i
νµFs,i

µν

⎤

⎦. (19)
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The term N0 = ∏k
i=0 (n

i !) is the overall particle normalization term that enables
the energies to be additive, and ni is the number of particles in a given box i .
This is necessary as each box is internally normalized by ni !. It may be recalled
that H = T + V. In this case, the V terms relate to the Coulomb interactions
involving particles in a given box and all other boxes. The full magnitude of
the force is seen by the particle through the H matrix. However, to include the
full magnitude in the energy computation would lead to a double counting (and
hence over-estimation) of the Coulomb energy between dissimilar particles. In
order to correct for this, the ‘single particle’ energy is given by P

(
T + V

/
2
)
, and

it can be trivially shown that this leads to the result shown above. The zero-order
energy of the system (term 00), is then

E00 =
k∑

i=0

Ei . (20)

Once the energies are computed for the higher-order correction terms, one can
then generate the total energy of the system using

E =
∑

a,b Eab∑
a,b Sa Sb

. (21)

The computation of the higher order correction terms is carried out in an anal-
ogous fashion. A combined coefficient matrix is generated from the individual
C matrices such that the columns of the combined (C•) matrix are taken from
the C matrices. The C• matrix has dimension of the K × ∑

B NB . Hence, the
C• matrix for the reference configuration is a block diagonal matrix. Particle
interchange is achieved by interchanging the columns corresponding to the par-
ticle indices of the particles being interchanged. The P and D matrices are then
obtained as products over rectangular matrices. The energy computation for the
higher order correction terms can then be performed as outlined above.

4. Computational expense and scaling

There are two components to the time requirement. The initial component
is the time required for SCF convergence. As the SCF convergence is carried
out in several ‘boxes’ independently and serially, the time requirement increases
as the number of boxes and the fourth power of the number of basis func-
tions in each box. This requirement is identical to the time requirement for a
Hartree-Fock computation on each box separately. The time required for SCF
convergence (barring difficult convergence cases) increases as T SC F ∼ ∑

boxes N 4
B

where NB is the number of basis functions in box B.
By far the largest contribution to the time required for a computation is

the post-processing step. This is greatly affected by the number of ‘configura-
tions’ to be included in the computation. The number of configurations increases
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with the number of particles and the number of boxes in the system. It is, in a
sense, a measure of the amount of flexibility in a system. As a rough approxi-
mation, the number of configurations is given by kK , and the number of energy
terms is given by the square of the number of configurations. Hence, isotopic
substitution becomes a factor that affects the computational requirements, as it
increases the number of boxes in the system. It has been found that when real
basis functions are used, the number of energy terms one need compute is nearly
halved, as the off-diagonal terms are identical. Within each energy term, the time
expense varies as

(∑
boxes NB

)4, leading to an overall post-processing time that
varies as [kK ]2

(∑
boxes NB

)4. For all systems, this is the limiting step in terms
of the computational resources. It is for this reason that it is recommended that
the post-processing only be performed on the optimised densities and not dur-
ing intermediate steps. It is evident that the total number of computations to be
performed is severely dependent on the basis set employed, as the computational
time increases rapidly with the total number of basis functions.

5. Discussion

The current method by its construction was required to fit certain condi-
tions. Among these is the requirement that the molecular wavefunction should
not be separable into electronic and nuclear contributions. This means that
it should not be possible for the molecular wavefunction to be expressed as
Ψ = ψeψn or simply as Ψ = ∑

i
∑

j ψ
i
eψ

j
n , since the latter can be rearranged to

Ψ = (∑
i ψ

i
e

)
(
∑

j ψ
j

n ). Obviously, this latter representation is only a restatement
of the initial approximation. It is therefore necessary that the molecular wave-
function be expressed as a sum of products, where the terms of the series are
non-factorable into nuclear and electronic terms. In the current method, the total
molecular wavefunction is given by

Ψ = 1√
N

∑

i

⎡

⎣Si

fermions∏

n=1

∣∣Dn
i

∣∣
bosons∏

n=1

∣∣Dn
i

∣∣+

⎤

⎦. (4)

In the above equation, the summation is over various ‘configurations’ where the
configuration space extends over the molecular orbital space computed under
the separability approximation. The available space for a particle includes the
‘orbital’ space of every type of particle in the system with the probability of
particle interchange being governed by the overlap integral of the two occu-
pied functions. This scaling of the overlap makes it impossible to factorise the
molecular wavefunction into separable components, thus satisfying the primary
requirement of a truly non-Born–Oppenheimer method. However, due to the for-
mation of an electron-nucleus coupled wavefunction, one can strictly no longer
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consider the system as a collection of occupied MOs. The system is now speci-
fied only in terms of a state, described by the wavefunction. Of course, this was
always expected for a true ab initio method, though recent history has run con-
trary to such views. It has been customary to think of a molecule in terms of
an electronic state (or even assemblage of MOs), assuming that the nuclei offer
nothing more than the Coulombic potential background on which the electrons
interact.

As is obvious from the implementation described previously in this section,
the nuclei have been ‘placed’ in orbitals and hence the nuclei are necessarily de-
localised. Since the extent of delocalisation is a factor of the mass of the particle,
it can be seen that the deviation from Born–Oppenheimer behaviour is small for
the heavier nuclei and larger for the lighter nuclei. This is consistent with expec-
tations, as the basis of the BO approximation is the separability of nuclear and
electronic motion due to the large mass ratio. This would tend to be a more valid
assumption as the nucleus increases in mass.

Another important feature of this method is the introduction of inter-
change between particles of different types. This leads to an increased region of
delocalisation for the nuclei. At the same time, this increases the concentration
of the electronic density in the region of the mean positions of the nuclei. It is
also noteworthy that no effort is made to correct for the cusp at the nuclear
positions. This is because the cusp is an artefact of the Born–Oppenheimer
approximation. The cusp originates from the fact that an electron cannot occupy
the same position as a nucleus, leading to a singularity. Since the nuclei are
no longer required to be clamped in position, there is no necessity to have a
singularity (cusp) at the nuclear positions. Since the nuclei are treated as quan-
tum particles, they occupy a region of space that is given by the wavefunction.
The electronic wavefunction must satisfy the Hamiltonian operator used in con-
junction with the nuclear charge distribution (as described by the nuclear MO).
As the nuclei are represented as continuum charge distributions, there cannot
exist a cusp in the electronic wavefunction at the mean nuclear position. This
is analogous to the result obtained when employing the finite-nucleus model
[34]. However, the tendency for an increased electron density in the vicinity of
the nuclear positions is undiminished, and satisfied by the interchange principle
built into the model. Hence, the interchange principle serves two purposes. It
helps to improve the particle density distributions while at the same time making
the wavefunction non-separable (non-factorisable) into separate electronic and
nuclear contributions.

6. Conclusions

A non-Born–Oppenheimer SCF method has been outlined and some salient
features of a possible implementation have been outlined. The computational
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expense of this method prevents it from being of general applicability. An
implementation should allow the effect of isotopic substitution to be calculated
using this method. A further discussion of the method development is also avail-
able [35].
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